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Abstract- Image restoration from noisy observations is an inverse problem. Total variation (TV) is widely used to 

regularize this problem. TV preserves object boundaries better than a quadratic regularizer; however, it performs poor 

in low-textured image regions because it generates undesirable staircase artefacts. Furthermore, TV can preserve sharp 

horizontal and vertical edges; however, it causes the unnecessary smoothing of edges at an angle other than 0 or 90. 

This problem arises because TV minimizes the gradient magnitude. Therefore, to preserve sharp boundaries, the design 

of an efficient variational regularizer is crucial. This paper presents a novel regularizer for the denoising of multi-channel 

vector valued image. The proposed regularizer uses horizontal, vertical as well as diagonal derivatives, and imposes the 

intensity continuity of partial image derivatives at each pixel of the underlying image. Experiments reveal that the 

proposed regularizer preserves edges and object boundaries better than TV based regularizers. This regularizer is also 

able to reduce undesirable staircase artefacts produced by TV in flat image regions. 
 

Index Terms -- Image denoising, Regularization, Sparsity, Total variation, Multi-channel images.  

 

 

I. INTRODUCTION 

Most of image processing tasks are inverse problems where 

the aim is to find the solution of an unknown signal from 

noisy observations. Variational methods stabilize the solution 

of these ill-posed problems by regularizing unknown signals 

[15]. The regularization is required to obtain physically 

plausible solutions. A good regularizer ensures a stable 

estimation of the unknown signal; therefore, the design of an 

efficient variational regularizer is crucial. 

Variational methods impose a smoothness constraint to 

regularize ill-posed image processing tasks. A quadratic 

regularizer blurs strong edges and object boundaries by 

penalizing intensity variations at or across them. To protect 

sharp edges and boundaries, robust norms are used with the 

smoothness constraint [4]. The ℓ1 norm is of particular 

interest because it makes the variational functional convex. 

TV regularization has been successfully used in numerous 

image processing tasks such as image denoising [2, 12, 23, 

28], image restoration [18, 19], image deconvolution [8] and 

image de-blurring [2, 20]. The TV regularizer promotes the 

sparsity of the computed solution. It preserves object 

boundaries better than a quadratic regularizer; however, it 

performs poor in low-textured image regions because it 

generates undesirable staircase artefacts. Thus, this paper 

proposes a novel sparsity enhancing regularizer, which aims 

to overcome shortcomings of the TV regularizer. 

The rest of the paper is organized as follows. Section 2 

reviews regularization techniques for variational methods. 

Isotropic, anisotropic and higher order total variation 

regularizations are focused in this review. Section 3 proposes 

a novel regularizer that enforces the continuity of partial 

derivatives of the underlying image. The rotational invariance 

of the proposed regularizer is proved. Section 4 embeds the 

proposed regularizer into a variational framework to denoise 

multi-channel images. It also gives algorithmic details of the 

proposed method. Section 5 presents experimental results to 

show the superiority of the proposed regularizer over total 

variation for noisy image restoration. Section 6 concludes the 

paper.  

 

II.  SPARSITY PROMOTING TV REGULARIZATION 

This section presents sparsity promoting isotropic, 

anisotropic and higher order TV regularizers. 

A.  ISOTROPIC TOTAL VARIATION 

An isotropic quantity does not change its value regardless of its 

direction of measurement. An isotropic regularizer applies the 

same amount of regularization in each direction [6]. Let a 

digital image. F(i, j) be defined for the horizontal and vertical 

co-ordinates i and j, respectively, over a domain  . The 

discrete isotropic TV (iTV) of F(i, j) can be defined as the sum 

of the magnitude of the image gradient at each pixel: 
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The sum of the gradient magnitude makes TV a semi ℓ1 norm. 

It is well-known that ℓ1 norm of the gradient promotes the 

sparsity of the image in the gradient domain [5]. Therefore, a 

piecewise smooth image is obtained by minimizing (1). An 

isotropic TV can preserve sharp horizontal and vertical edges; 

however, it causes the unnecessary smoothing of edges at an 

angle other than 0 or 90. This problem arises because 

isotropic TV minimizes the gradient magnitude. This problem 

can be reduced by using variants of TV, for example, 

anisotropic TV [13, 25, 26], nonlocal TV [16, 21] or higher 

order TV [7, 27]. 

B.  ANISOTROPIC TOTAL VARIATION 

Anisotropic TV applies a direction dependent regularization to 

the underlying image. It imposes the smoothing along strong 

intensity structures but not across them [26]. For a discrete 

image F(i, j), the anisotropic TV (aTV) can be defined as the 

sum of the absolute difference of partial image derivatives: 

 

 

 

  Anisotropic TV regularization performs better than 

isotropic TV at strong intensity structures such as edges and 

object boundaries. However, unlike isotropic TV, it is not 

rotationally invariant to the pixel grid. Thus, it produces 

suboptimal solutions in the presence of rotations of the camera 

or the pixel grid [17]. 

Discontinuities in an image occur along object boundaries 

where the image gradient is high. Therefore, making the 

regularization adaptive to the image structure can preserve 

sharp boundaries better than a non-adaptive regularization. To 

this end, anisotropic TV regularization is sometimes weighted 

by an image-driven weight function w(|∇I|) as 

 

 

 

 

For small positive numbers α and β, w(|∇I|) can be chosen as 

w(|∇I|) = exp(−α|∇I|β). Anisotropic TV is easier to minimize 

than its isotropic counterpart. Therefore, numerous convex 

minimization methods can be used to minimize anisotropic TV. 

These include gradient methods [3, 14], primal dual methods 

[6], iterative shrinkage or thresholding-based methods [2, 4], 

and graph cuts based methods [11, 17]. 

C. HIGHER ORDER TOTAL VARIATION 

Isotropic and anisotropic TV produce staircase artefacts in low-

textured and flat image regions. To reduce this undesirable 

effect, higher order total variation regularization has been 

proposed [7]. 

 

 

 

The use of higher order derivatives may result in the blurring of 

sharp image boundaries. Thus, higher order TV regularization 

uses an adaptive functional which makes the regularizer act as 

ordinary TV at sharp boundaries, whereas it uses higher order 

derivatives in textured and flat image regions. 

Total generalized variation (TGV) has been proposed as a 

generalization of higher order TV regularization [22, 27]. By 

changing the order of the regularizer, TGV allows to 

reconstruct piecewise smooth, affine and quadratic images. The 

TGV regularizer can be used to obtain a globally optimal 

solution because, similar to the TV regularizer, it is also 

convex. TGV and HOTV are computationally more expensive 

than the ordinary TV because of the calculation of higher order 

derivatives. 

III. PROPOSED REGULARIZER 

This section proposes a novel regularizer capable of avoiding 

the shortcomings of TV based regularizers. The proposed 

regularizer is based on the variational measure introduced in 

[24], which imposes the intensity continuity of partial image 

derivatives at each pixel in a small neighborhood. The 

variational measure is defined for scalar images only. However, 

the proposed regularizer is designed to handle multi-channel 

vector valued images. This regularizer, in contrast to TV based 

regularizers, can preserve edges and object boundaries which 

are not either horizontal or vertical. It is also able to reduce 

undesirable staircase artefacts produced by TV in flat regions 

where there is a little intensity change. First, the regularizer is 

formulated for multi-channel images. Second, the rotational 

invariance of the proposed regularizer is proved for multi-

channel images.  

A.  THE FORMULATION 

Let F = [F1 F2 · · · Fc]T be a multi-channel image with c number 

of channels. Discrete partial derivatives of this image F at pixel 

location (i, j) can be given as forward differences: 

 

 
 

and 
 

Mathematically, higher order total variation (HOTV) can be 

given as 
 

 
 

 

where k represents the order of the regularization, and a 

positive constant α balances the effect of gradient and higher 

order 

derivatives. The idea 

of using higher order derivatives has been modified to include 

Laplacian  with the gradient for the regularization of 

unknown images as 

Now, for each channel of F, let us consider the continuity of 

its partial derivatives in a 2 × 2 neighborhood. Partial 
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derivatives ∇x(i,j) and ∇y(i,j) can be continuous along all 

directions except their own directions because they are 

desired to be discontinuous to preserve sharp edges and 

boundaries. For example, ∇x(i,j) enforces the continuity along 

all directions except the horizontal direction. The continuity 

of partial derivatives depends upon the direction associated 

with the boundary. Continuity constraints for different 

boundary directions in a 2 × 2 neighborhood are as follows: 
Figure 1: The gradient continuity: (a) a 2 × 2 neighbourhood showing pixel positions, (b)-(e) the vertical, horizontal, diagonal 45o and diagonal 135o boundaries, 

respectively. Required derivatives for the gradient continuity are shown in blue colour in (b)-(e), for each direction of the boundary. 

 

Figure 1 shows these four boundaries along with 

associated image derivatives in a 2 × 2 neighborhood. For 

vertical, horizontal,  diagonal 45◦ and 135◦ boundaries, the 

directional continuity of partial derivatives ∇x and ∇y is 

enforced by minimizing ∇xx(i,j), ∇yy(i,j), ∇xy(i,j) and ∇yx(i,j), 

respectively. To regularize the multi-channel image F, we 

minimize the ℓ1 norm of aforementioned partial derivatives 

as  

 

 A careful inspection of continuity constraints reveals that 

 

Given the goal to recover sparsest partial derivatives, ∇xx(i,j) = 

0 or ∇yy(i,j), = 0 implies zero partial derivative along the 

horizontal or vertical direction, respectively. This is 

equivalent to ∇x(i,j) = 0 or ∇x(i,j) = 0. In this case, the 

minimization of ||∇xx F||1 and  ||∇yy(i,j) F||1 is redundant under 

the minimization of either ||∇x F||1 or ||∇y F||1. Therefore, these 

two terms can be omitted in (6). Since F = [F1 F2 · · · Fc]T, we 

penalize the magnitude of  

Horizontal, vertical and diagonal derivatives of each channel, 

and denote this regularizer as HVD (F): 

 

 

 
The regularizer HVD(F) enforces the continuity of partial 

image derivatives at each pixel, and minimizes their ℓ1 norm 

separately. 

Therefore, regularizing an image using (8) is expected to 

preserve sharp horizontal, vertical as well as diagonal edges. 

Furthermore, the inclusion of diagonal derivatives along with 

the horizontal and vertical derivatives in a neighborhood 

around each pixel imposes more constraints on the image to be 

restored. Consequently, the HVD regularizer reduces staircase 

artefacts in flat regions. In addition, it is more robust against 

outliers than traditional TV regularizer. The separate 

minimization of partial derivatives favors a solution which is 

sparser than the solution obtained by using TV. As an 

implication, HVD(F) requires fewer number of measurements 

than TV for the estimation of unknown signals. 

 

B.  ROTATIONAL INVARIANCE 

We prove the rotational invariance of the proposed regularizer 

given in (8) for multi-channel images. We use 2D rotations to 

give proof for 2-channel images; nevertheless, by using higher 

dimensional rotations, it is easy to show that the regularizer is 

invariant to rotations for multi-channel images. Let R be a 2D 

rotation matrix for a 2- channel image F = [F1 F2]T. When the 

camera is rotated by an angle θ, the rotated image RF is given 

as 

 

or 

 

 



 

M. W. Nawaz et al.                                                                                                          PakJET 
  

54 

 

where R = ( R1  R2). For the proposed regularizer, we will 

prove that HVD(F) = HVD(RF). Considering the first term in 

the square root of (8), i.e., (∇x F1)2 + (∇xF2)2, and substituting 

rotated image RF into this term, we get 

 

By canceling common terms and after some rearrangements, 

we obtain 

 

which is identical to the image without rotation. The similar 

proof can be provided for terms involving ∇y, ∇xy and ∇yx. 

Hence the proposed regularizer is invariant to camera 

rotations. 

 

IV. IMAGE DENOISING USING PROPOSED 

REGULARIZER 

In this section, we apply the proposed regularizer to the 

problem of image denoising. Let f = [f1 f2 · · · fc]T be the 

lexicographically vectorized multi-channel image F, g be the 

degraded version of f and S be a linear matrix operator that 

represents the degradation process. The image restoration 

model can now be given as 

              

where η denotes multichannel noise. One popular example of 

the restoration process is image denoising. When the matrix S 

is assumed to be an identity matrix In of size n × n, we get g 

to be a noisy version of the original image f. We denoise (11) 

using the proposed regularizer. The variational energy E(f) 

incorporating (11) and the proposed regularizer can now be 

given as 

   

where λ is a regularization parameter. The first term in (12) 

represents the data fidelity term that enforces the restored 

image to be close to the noisy image. We have used the robust 

ℓ1 norm with the data fidelity term to handle outliers in the 

restoration process. Note that both data and regularization 

terms in (12) are convex; thus, convex optimization methods 

can be used to solve for f from the resulting energy E(f). 

Here, we demonstrate how a fast algorithm, NESTA, 

presented in [3] can be modified to solve Equation (12). 

NESTA has been used to solve large-scale variational 

problems [9]. We give the algorithmic details for the image 

denoising. NESTA uses a differentiable Huber norm 

approximation to the ℓ1 norm; therefore, it can handle smooth 

as well as non-smooth convex functionals. We modify 

NESTA to solve image restoration problem. 

 

Table 1: The proposed algorithm for image restoration 

 

The Huber norm is given as 

 

The derivative of the Huber norm is given by 

           

We use differentiable Huber norm in place of the ℓ1 norm in 

(12). The combined data and the regularization energy E(f ) is 

now given as 

 

where ∇x, ∇y, ∇xy and ∇yx are sparse difference matrices to 

calculate derivatives of vectorized images. An iterative 

scheme is used to find the minimum of (13) at iteration k as  

 

where ∂f
k E(fk) = ∂E(fk) / ∂fk . The algorithm computes two 

auxiliary variables pk and qk at each iteration from ∂f
k E(fk). It 

then combines both auxiliary variables to get next estimate fk. 

The choice of plays an important role in the algorithm. The 

speed of the convergence is shown to have direct relationship 

with this approximation constant [3]. A small value of  gives 
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good accuracy at the cost of slow convergence and vice versa. 

The proposed algorithm uses Lipschitz continuity; therefore, 

a Lipschitz constant L is required for the computation of 

auxiliary variables from (14). Lipschitz constant L depends on 

λ, Huber norm parameter , and the norms of sparse 

difference matrices.  

To compute the Lipschitz constant L, we need to find the 

upper bound for the norm of HVD. It has been shown in [10] 

that difference matrices used to calculate TV are bounded 

above by 8. A similar analysis can be made for difference 

matrices used in HVD. The ℓ1 norm of any matrix is 

maximum absolute column sum of that matrix. 

HVD consists of four sparse difference matrices: ∇x, ∇y, 

∇xy and ∇yx, which are used to compute discrete differences. 

These matrices have exactly two nonzero entries +1 or −1. 

Therefore, they satisfy ||∇x||1 = 2, ||∇y||1 = 2, ||∇xy||1 = 2 and 

||∇yx||1 = 2. Since we minimize the magnitude of each partial 

flow derivative in HVD, 

 

Hence, difference matrices used in HVD are bounded above 

by 16. Lipschitz constant L is then given as L = 16λ/. The 

algorithm runs for a fixed number of iterations or until it 

reaches the convergence. The summary of the algorithm is 

shown in Table 1. 

V.    EXPERIMENTAL RESULTS 

The proposed regularizer has been tested on several images to 

evaluate its performance under noise. For the validation of the 

proposed regularizer, a comparative analysis is conducted with 

isotropic [6], anisotropic [26] and higher order TV [27] 

regularizers by assessing the quality of the denoised images. 

First, the experimental setup, describing images used in 

experiments, is presented. Second, the performance is analyzed 

on images corrupted by a controlled amount of noise.  

 

A.    EXPERIMENTAL SETUP 

All experiments have been performed on publically available 

real world images which are used as benchmarks for various 

vision and image processing tasks. The image dataset used in 

these experiments comprises of greyscale images Cameraman, 

Barbara, Boat and Man, and colour images Baboon, House, 

Monarch and Pepper. These images are corrupted by a 

controlled amount of noise. The quality of denoised images 

have been assessed by calculating the peak signal to noise ratio 

(PSNR), which is given as  

 

where fmax = 255 for an 

8 bit image and MSE is the 

mean squared error: 

 

   

To conduct a fair comparison, the energies of proposed 

regularizer and the three TV regularizers are minimized using 

NESTA ([3]). It should be mentioned that the use of different 

regularizers alter the variational energy to be minimized. 

Consequently, the values of optimum regularization parameters 

for these regularizers also change. In these experiments, we 

have manually tuned regularization parameters of these 

regularizers to get best denoising results for all of these 

regularizers. These experiments are conducted using λiTV = 

0.05, λaTV = 0.05, λHVD = 0.01 and λHOTV = 0.006. 

 

B.   IMAGE DENOISING 

These experiments have been conducted to test the capability 

of the proposed regularizer to denoise images. A controlled 

amount 

of Gaussian noise is added to images described above. Since 

clean images are available, performances of the proposed and 

TV based regularizers have been measured quantitatively by 

calculating the PSNR for denoised images. The influence of the 

controlled noise is also analyzed qualitatively on denoised 

images. 

Table 2 shows quantitative results for all four regularizers 

on eight images. These results have been taken for a standard 

deviation of noise σ = 25. Optimum values of regularization 

parameters are used for all regularizers. It can be observed that 

the HOTV regularizer performs better than both isotropic and 

anisotropic TV regularizers. However, the proposed HVD 

regularizer outperforms the HOTV for most of images. 

Figure 2 demonstrates the denoising of the greyscale image 

Cameraman when it is contaminated with a noise of σ = 25. 

Highlighted parts of images in Figure 2 (c) and (d) show 

staircase artefacts, whereas highlighted parts in Figure 2 (e) and 

(f) show a significant reduction in these artefacts. However, the 

image denoised by the HVD has a higher value of PSNR = 

30.21 as compared to the image denoised by the HOTV 

regularizer with a PSNR = 29.38, as given in Table 2. 

Highlighted parts of Figure 2 are also shown in Figure 3 as 3D 

plots for a better visualization of staircase artefacts. 

Denoising results on the colour image Monarch are shown 

in Figure 4. A qualitative comparison of images in Figure 4 (b) 

and (c) with (d) and (e) reveals that HVD and HOTV 

regularizers outperform anisotropic and isotropic TV especially 

in highlighted textured regions of denoised images. The image 

denoised by the HVD regularizer in Figure 4 (d) has a higher 

PSNR = 30.92 than anisotropic, isotropic and higher order TV 

regularizers with PSNR = 28.58, 28.07 and 30.15, respectively. 

Moreover, staircase artefacts can be observed in highlighted 

parts of images in Figure 4 (b) and (c). HVD and HOTV 

regularizers do not show noticeable staircase artefacts.  

Figure 5 presents PSNR as a function of standard deviation of 

noise σ for all four regularizers. An average PSNR has been 

calculated over all eight images, and the results are reported in 

Figure 5 (a). These results clearly indicate that the proposed 

regularizer outperforms TV based regularizers for increasing 

values of standard deviation of noise. Similar kind of results 

can be observed for Cameraman and Pepper in Figure 5 (b) 

and (c), respectively 
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   (a)            (b)                 (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (d)          (e)                (f) 

Figure 2: The denoising of the greyscale image Cameraman. (a) Original 

image, (b) image corrupted by a Gaussian noise of σ = 25, image denoised by 

(c) anisotropic TV, (d) isotropic TV, (e) the proposed HVD and (f) higher 
order TV regularizers. Highlighted parts of these images are also given in the 

bottom. 

 

Figure 3: Highlighted parts of Figure3 shown as 3D plots for the 
visualization of staircase artefacts. 

 

 

 (a)            (b)                 (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    (d)            (e)                (f) 

Figure 4: The denoising of the colour image Monarch. (a) Original image, 

(b) image corrupted by a Gaussian noise of σ = 25, image denoised by (c) 

anisotropic TV, (d) isotropic TV, (e) the proposed HVD and (f) higher order 
TV regularizers. Highlighted parts of these images are also given in the 

bottom. 

 

VI. CONCLUSION 

This paper presented a novel sparsity enhancing variational 

regularizer for multi-channel image denoising. It investigated 

sparsity enhancing regularizers in the context of variational 

methods. The proposed HVD regularizer was proven to be 

rotationally invariant to camera motions. TV regularizer is 

known to generate staircase artefacts in the computed solution. 

However, the HVD regularizer was shown to reduce these 

artefacts significantly. The proposed regularizer was applied to 

the problem of image denoising. Experiments were conducted 

to show that the proposed regularizer can produce results better 

than TV based regularizers in terms of higher PSNR and better 

visual quality. 
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Table 2: PSNR results for the denoising of all eight images using optimum values of regularization parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 
 

 

(c) 

Figure 5: The PSNR as a function of the standard deviation σ of noise for 

anisotropic TV, isotropic TV, proposed HVD and higher order TV 

regularizers. Results for (a) the whole dataset of 8 images (b) Cameraman 
and (c) Pepper. Regularization parameters of all four regularizers have been 

tuned to get best PSNR performances. 
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