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Abstract- In this paper, our core purpose is to study the synchronization of two different systems by the feedback controller 

technique. These two systems are dynamically nonlinear systems having different time delays in the presence of disturbance. 

The master state of the system has the energy-bounded input noise. This proposed technique is exceptionally advanced. In this 

scheme, it can synchronize the nonlinear time-delayed master and slave system very precisely with free of error. The 

synchronizing time and the minimization of the error rate depend upon the gain factor of the controller. The applicability and 

effectiveness of the given controller topology are verified by the simulation example of phase-locked loops in our research paper. 

The simulation results witness that the error converges to origin with time. The systems get synchronized after the error 

becomes zero between the states of the master and slave system. 

 
Index Terms - Synchronization, Output feedback, Complex systems 

 

 

 

I. INTRODUCTION 

 
Synchronization can be defined in terms of more than two 

periodic or dynamical systems that are emerged each other or 

coupled together, as discussed in [1]. In different fields such as 

Mathematics, Applied Physics, Control Science, and Biology, this 

concept is widely used. The concept of synchronization for the 

chaotic and complex systems has received a significant focus in 

this modern era’s research. Several methods of synchronization 

techniques were introduced based on the control approach. These 

various techniques such as the observer-based control approach as 

discussed in [2,3], adaptive control technique in [4], sliding mode 

controller approach elaborated in the [5], time-delay feedback 

control scheme is in [6], impulsive controller scheme is discussed 

in [7] and the great inspiring work of Carroll and Pecora was 

discussed in [8]. These are the most important and widely used 

techniques in the control field such as the synchronization of any 

systems. Apart from the core motivation, this is widely used in the 

applications of securing communications. The numerous forms of 

chaotic synchronization include synchronization of the Lur’e 

master and slave system. The work for the synchronization of 

chaotic Lur’e system was controlled in different ways. The 

absolute stability theory in [9] and different circumstances have 

been established in [10-11]. Nevertheless, there exists the study of 

nonlinear systems with numerous symmetries and generalization 

of mathematical equations of the pendulum model. This pendulum 

system is a kind of multi equilibria approach which is practically 

used in different fields such as mechanical and electrical 

engineering applications (phase-locked loop and synchronous 

machine). The objective of this research paper is to synchronize 

the unbalanced master pendulum system and slave system by 

robust feedback technique and LMI based method for the 

synchronization of the chaotic dynamical pendulum system and 

output feedback controller technique. The closed-loop error 

minimizes after very little time and the system becomes stable, so 

the disturbance input effect reduces. To validate our research 

results we have taken the example of the phase-locked loop 

system. 

II. SYSTEM DESCRIPTION 

The nonlinear feedback controller systems, having infinite 

equilibria and periodic nonlinearity cover an extensive type of 

system in mechanics, engineering, power systems, and different 

fields. The synchronization is commonly used in the engineering 

field to achieving the synchronization between the two master and 

slave systems. We have taken the state space representation of 

these systems as given below in equations (1) and (2) respectively 

and by using the feedback controller scheme we can get the 

desired output. We will consider the following nonlinear feedback 

controller systems in our research paper: 



   39 

 

 

1

1 1 1

(t ) ,  

(t ) ,  

m m md

T T
m md

X AX A X B

h C X C X D

  

 


     


      

           (1) 

 

 

2

22 2

(t )    ,

+ (t ) ,  

s s sd

T T
s sd

X AX A X B u

h C X C X D

 

 


     


     

            (2)  

In both system states (1) and (2) the sates vectors such as 
n

mX R  and
n

sX R . Whereas different constant real matrices 

are the following as ,
n n

dA A R


  , 
n l

B R


 , ,
m n

dC C R




and 
m m

D R


 . The output vectors are written in the form as
m

h R , the  is the disturbance and the phase vector is
m

R

. The u   variable is the unidirectional-coupled term, the specific 

objective of this variable is to control the output. The continuously 

differentiable vector :
m m

R R   and valued functions are

 n  . This component is considered as periodic and finite 

numeral of zero’s in time intervals. Master system can be 

characterized by the transfer function of linear part from input 

    to output 


 and the subsequent supposition was made on 

the equation (1) with phase variable  . The Transfer function 

 T s was hypothetically taken as a non-singular matrix.  

   
1

  
T

s C SIT A B D


     

The pairs like  ,A B  are the controllable matrix and the 

observable parameters are  ,
T

A C . 

   ( )eq eqA x B   ,     
1

0
T

eqC A B D 


    

The parameter   0eq    and we know the equation (1) of 

the system has periodicity and infinitely isolated stabilities. In this 

paper, our main objective is to synchronize the given systems (1) 

and (2) by using the fast controller scheme. Synchronization can 

be efficiently achieved in the presence of noise between the master 

and the slave system. The H∞ is the technique in which 

performance is employed by the feedback controller to the slave 

system by the help of the controller signal
n l

B R


 . The error 

signal exists between the master and the slave system, these errors 

are defined as 1 2.h h    Synchronization error dynamics 

among the chief and the slave system is elaborated in equation (3) 

as given below: 

 

 

1 2

1 2

( ) ( ) ,

( ) ( ) ,

m s

d d

T T
d d

X X

A A B u

C C D



     

    

  
 


       


     

           (3) 

Here the term  1 2( ) ( )    is the periodic function. 

III. SYNCHRONIZATION VIA H ∞                                   

CONTROLLER 

 Error dynamics during synchronization of master and slave 

systems, a controller can be used for synchronization if diminution 

disturbance exists and this can satisfy the two conditions where 

the first condition is zero initial condition and γ is greater than 

zero. The second condition is zero disturbances where input is 

exponentially stable; this controller is called H∞ controller and γ 

is called H∞-norm bound of the controller. This controller can 

synchronize the master and slave system and the controller is 

given as below: 

2
,

0

0,

T T
G dt

G

    


 



 
                                          (4) 

IV. SYNCHRONIZATIN VIA FEEDBACK 

CONTROLLER 

 The master and slave are models of the pendulum-like system. 

It can be synchronized by matrix inequality-based approach under 

the robustly synchronizing and feedback controller u which is 

given below as: 

1 2
,u K

 
   

 
 
 

             (5) 

The u  is the control input and we will put this u value in the 

equation (3). The gain constant is 
n m

K R


  and in this paper, we 

have used the feedback scheme, this can fast and slow the system 

response, and synchronization error dynamics can be rewritten as 

   
  

 

 

1 2

1 2

1 2

( ) ( ) ,  

( ) ( ) ,  

( ) ( ) ,

T T
d d d

o ood d

T T
d d

A KC A KC

B KD

A A B

C C D

  

  

    

    


   

     

      


     

                        (6) 

The system with zero initial condition and diagonal matrix can 

be defined in term of  1 4  , ..,diag   . 

 

 

2
0

2
0

( ) ( )  

 , 1, 2, 3...n,

( ) ( )  

Ti

i i

i Ti

i

d

i

di

  



  

  

 

  

       (7) 
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       2 2( ) ( ) ( ) ( ) ,i i i i ii iF               

and satisfies the 
0

 0

Ti

iF d    and after satisfying this 

function, master and slave system becomes synchronized.  

Theorem: The master and slave system synchronize with the 

help of a robust H∞ controller. Equation (8) can be termed as H∞ 

synchronization controller that has disturbance attenuation γ. 

Conditions for synchronization are symmetric matrix 

0, ,W M N  and a diagonal matrix , ,  0l   .As explained in 

following matrices 

 

1 2

3

2

 W+MA N MA N CK N C K N M C

B N D K N 0.0 M

00.0

0.0

T T T T T T T T
d d

T T T T T

T
N N N

i I

     

    

  

  

    

 
 
 
 
 
 
 

 (8) 

    0
2

2

l 






 
  

                                            (9) 

1 2 3, ,    these are further explained as, 

1

2

3

1

2

1

2

( )

( )

 ( )

1 / 2

T T T T T
d d

T T T
d d

d d

T T

A A CK C K M

M A A KC KC CC

C C CD C D M MKD

D D D D  

     

    

      

    

 

Proof:  

The concept of a Lyapunov function is used in this paper. 

     

     

   

1 2

1 2

, , ,  
1 0

, , ,

,  
1 0

T
i s

T
s

in
V W V F X dxi

i

V V V

in
V W Fk X dxi

k



      

     



    

   


 

   


 

For matrices such as M, N with suitable dimensions, 

 

 1 2

0.0
( ) ( )

0.0

0

T T
ood d

M
A A Bo

N
       

 

       

 

    
        

 

By incorporating term 2 , and taking time derivative of these 

terms  ,V    ,  1
,V    and  2

,V    are as given below. 

    1 1 2
, 2  ( ) ( )

2

T
o ood dV W A A B             

 

      

   
2

, =
1

i i i

n
V F i

i
    


 

     1 2
, , ,V V V     



  

 

   

 

2 2
2

2 2

2 2 2
2

1

( ) ( ) ( ) ( )

1
( ) ( )

i i i

i i i i ii i

i i i

i

n
ki i

i

vn

i

i i

  

       

   

    


      

 


    

 
 
 

 
 
 
  

 

 It can be considered from (9) that 

   

 

2 2 2
2 2

2 2 2
0 0 2

( ) ( ) ( ) ( )

( ) ( )

i i i i i

i i i

l i i i i i

i i

       

   


       



    

  

Let 

 
 

 

2

2

( ) ( ) ,  

( ) ( )

s iod do i

T T
i id d

A A B

C C D

      

     


       


      

 

   2 2 2
0 0 2,  ,

1

T T
k k k k k k

m
V i

k
        


    



 
 
 

  

After further calculations we arrive on the result that,  

   1 2 1 2( ) ( )   ( ) ( )   
T T T T T T T T T T

T
                  
   

 

   

1 2

3

2

0

 

.0

 

T T T T
od

T T
s

T

W M A N A N M

B N

N N N

i I

 






 

  

   



 



 
 
 
 
 
 

    (10) 

 1

2

3

 

 +  ,

1 / 2( ) ,

1 / 2 1 / 2 ,

T T T T
o od od

T T T
d

od d

T T T

A M A M MA MA

C C C C CC

C C C D C D CD MB

D D D D D D



 

   

    

 

     

    

 

The system (3) with 0  is represented as follows. Upper 

left block of matrix Π as shown above is also negative semi 

definite matrix that represents.  
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1 /

( )

2( )

(

1 / 2 1

) 0

/ 2

T T T T T
o o od od

T

T T

T

d
dT

A T TA A T TA C C C C C D TBsd

D D

C C
C C D

D

D D



  

      

  


  

 
 
 

 
    

 

 (11) 

 By combining the condition of equation (11) and integration 

of equation (10) results are obtained as, 

     2
20

0
0

01

t

i i ik

n
V t V dt

ik
  



       


 
 
 

 

Because of the stable conditions, we noticed that the solution 

  of (3) is bounded, and the boundless form of equation 

   
0

F X dx
k


 is determined by the fact that  Fi i has a mean 

value of zero that demonstrates that  V t  is bounded. By 

combining the above expressions, the following results are 

obtained for 1, 2......i n :   

    

   

2
0 2

2 2

0

 ,
0 0

i i

ik

t
t t dti

t t
t dt t dt

 

 

    

    

              (12)  

Since the solutions for taking the master and slave system is 

bounded, nonlinearities factor is     2 2
2i it t    , 

1, 2......,i n  are uniformly continuous. Moreover, the only   

factor is periodic function and has finite number of zero’s we have 

 

   

2( ) ( ) 0,

ˆ ,  1, 2......

i i i

i i

lim it

lim t t i n
t

 

 

   


 


                    (13)  

Above mechanism explains that equation (6) is satisfied under 

zero initial conditions for all nonzero terms. Since 0   for all 

, l  and satisfying equation (4), it can be reduced by equation 

(10) in such a way that   2
, 0

T T
V           which 

shows the robust synchronization of master slave system. 

V. SIMULATION AND RESULTS 

We taking the example of a phase-locked loop system to 

elaborate our research result. This example is commonly used in 

electrical engineering and other engineering fields such as used in 

demodulators, retiming devices, and frequency synthesizers 

[12,13]. We are taking the two phase-locked loop interconnected 

systems which behave like the master system and slave system, 

these two systems are nonlinear, whereas the dynamics of systems 

are illustrated in the equation (1). These systems also have an 

external disturbance. The transfer function obtained from the ratio 

of output to input of the system is shown as
1

(s) (s)T X
s

 . Here, 

(s)X  is represented by the state-space equations. The state-space 

model is described as given below: 

0.1
0.2 0.45 0.3

0.1 cos(90 ),
4 0.5 0.4

0.2

x x




   


 
   
    

 

 

.2

2 0.4 cos(90 ),

.3

x    

 
 
 
 

 

We have taken the master and slave system and these systems 

have the external disturbances. The external disturbances may be 

represented as  
1

 , 0
1 5

t t
t

  


 and the slave system is under 

the feedback control  

 

.

0.24

1.26

0.26

K 

 
 
 
 

 

 

The K  is the gain matrix of these systems, the m=1 and matrix 

A KCT  is Hurwitz. The value of A  on the imaginary axis has 

no eigenvalue and matrices  ,A B  is controllable. So LMIs (7)– 

(8) are tested as achievable 

 

8.6722 0.3564
, 

0.3564 1.8269

1.1837, 0.6251, 0.0058.

W

k l






   

 
    

 

The simulation results of the master and slave system are 

obtained by different initial values of the system such as  

   0 0.4    0.5
T

x    ,  1 0 0.3    ,  2 0 0.5   and 

   0 0.30  0.23y
T

  .  

 

We achieved synchronization by the selected controller 

between the system (1) and (2).  Different figures such as 

demonstrates the chaotic behavior of the Lyapunov function 

systems and the error between the state of master and slave 

system. Fig. 1 elaborates on the phase portrait of the master and 

slave system and Fig. 2 illustrates the phase error between the 

states of master and slave system. So, it is observed that the 

synchronization errors become zero after a certain time and this 

synchronizing error time may increase or decrease by changing 

the gain factor value. 
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(a) 

 

(b) 

FIGURE 1. Phase portrait of Master and Slave systems respectively (a) and (b) 

Similarly the error between the output of master and slave system 

is shown in figure as given below.

 
FIGURE 2. Output errors between the Master and Slave system. 

VI. CONCLUSION: 

Nonlinear systems have disturbance and time delays are 

present in both states of the master and slave system. In this paper, 

we have efficiently and precisely achieved the synchronization 

among the master and slave systems by the robust feedback 

controller. The close loop error of the system becomes stable by 

the performance of the controller and achieves the synchronization 

between both systems. Due to the efficacy and applicability of the 

above-proposed methods, it can be widely used in different 

engineering field applications for numerical solution. In future for 

research, the dynamics output regulators can be practically used 

for attaining the H∞. 
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