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Abstract- Navigation accuracy, which is an imperative performance indicator for mobile robots, is intimately associated with 

the grid mapping algorithm (G-mapping) accuracy. In an unstructured environment, mobile robot positioning accuracy is 

important to ensure safety. For this reason, in this study  G-mapping Algorithm is modelled based on Rao-Blackwellized 

particle filter (RBPF) offering better results with a low number of sensors and features. To investigate various methods' 

effectiveness, a comparative analysis of three optimization methods namely Gradient descent, ANT colony, and firefly 

algorithm was made. The results exhibit that the firefly method performs well in terms of navigation accuracy, particle 

degradation, and ensuring mobile robot safety in a complex and unstructured environment. 

 

Index Terms-- Machine learning, Mobile robot navigation, Optimization. 
 

 

I. INTRODUCTION 

In increasingly composite and unstructured environments for 

mobile robots, the discovery of unidentified environments has 

become to be an important research area and a major concern in 

mobile robotics research. When a robot is in an unfamiliar 

location, its capability to locate itself becomes critical [1]. 

Furthermore, using a highly accurate global positioning system, 

the track detection technique use only can cause a cumulative 

error [2]. People expect to exploit the very important nature of 

multiple environmental observations while assessing the 

position of robots and landmarks, i.e. the location of the robot 

and therefore the mapping (SLAM) [3]. 

Simultaneous location and mapping (SLAM), which has been 

proposed as a tool, offers a mobile robot to travel in unknown 

surroundings while creating a map and assessing its position [4]. 

Unlike conventional navigation systems, which are based on 

previous environmental knowledge or external reference 

systems (e.g., GPS), SLAM  requires the deployment of on-

board sensors without additional assistance. As a result, SLAM 

has gained much consideration in mobile robotics and has 

become a key instrument for solving the problem of 

autonomous navigation of several unmanned vehicles, such as 

unmanned aerial vehicles [5], [6], under-robot marine [7], [8] 

and space robots [9]. 

SLAM is categorized into two types depending on sensors 

employed which are visual and LiDAR SLAM [10]. LiDAR 

SLAM is becoming an essential novel technique in the existing 

localization system due to its advantages, such as precise angle 

and distance measurement, the absence of scene design, 

multisensor fusion, the low light environment, and map 

generation to facilitate navigation [11]. The goal of laser SLAM 

is to map the environment and navigate the robot through an 

unstructured surrounding [12]. 

The robot, which incorporates light detection and range 

(LiDAR) as a sensor, is widely applied in commercial and 

civilian applications, considering the benefits of high accuracy, 

broad range, and transmission speed [13]–[16]. Similarly, the 

Robot Operating System (ROS) has many SLAM libraries such 

as SLAM G-mapping, Hector SLAM, ORB-SLAM, etc. [17]. 

Several studies on UGV robots introduces  Hector SLAM [18]–

[20] and LiDAR sensors. An automated motion robot was 

developed using a SLAM mapping algorithm that employs ROS 

for various obstacles detection [21]. 

Based on known odometry, LiDAR data, and inertial 

measurement unit (IMU), the mapping and localization of the 

G-mapping algorithm are established via modelling of Rao-

Blackwellized particle filter (RBPF) [22]–[25]. Laser recognize 

2D planes at different distances and angles, thereby creating 

information about point clouds in the spatial plane. The 

comparatively large map inaccuracy (i.e., navigation 

inaccuracy) is essential due to collective odometer errors and 

the effects of the RBPF algorithm (for example, high 

calculations and particle degradation). To enhance the 

accurateness of the G-mapping algorithm and lessen navigation 

inaccuracies, an optimization algorithm can be used to handle 

larger RBPF particle numbers and degradation, thereby 

improving particle distribution and providing particle diversity. 

Frequently used optimization algorithms comprise genetic 

algorithm, gradient descent, and firefly algorithm, ant colony 

algorithm [25]–[27]. 

To evaluate the least square problem, gradient descent algorithm 

was used, whereas to find an optimum path ANT colony 

algorithm is applied. The most extensively applied intelligent 
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algorithm in almost all fields is the firefly algorithm. In firefly 

algorithm the particle filter will be optimized intelligently, 

showing that the particle state is updated and particle 

degradation is avoided ensuring improved computational 

efficiency. 

In this research, a comparative analysis of three well-established 

optimization techniques for SLAM is made. This study 

incorporates a differential drive robot having two LiDAR 

mounted on its surface. The simulation results prove that the 

SLAM accuracy could be improved significantly by using 

optimization algorithms such as firefly algorithm thereby 

indicating that the navigation errors can be greatly reduced as 

compared to the other algorithms. 
 

II.  KINEMATICS OF DIFFERENTIAL ROBOT 

 
The differential drive has two wheels attached to a common axis 

so that both wheels can be moved backwards or forwards 

independently. 

Though both wheels speed could differ, the robot needs to move 

around a point that is alongside the axis of each wheel. The 

point about which the robot whirls is  Instantaneous Center of 

Curvature ICC as shown in Fig.1. 

 
FIGURE 1. Kinematics of Differential Drive [28] 

With the changing speeds of both wheels, the path that the robot 

takes can be changed. Because the rotation speed ω around the 

ICC needs to be the same for each wheel.  

                              (1) 

                              (2) 

Where  is the distance among the centre of both wheels, ,   

are the speeds of both wheels, whereas R is the specific distance 

from the ICC to the middle of the wheels. R and ω can be 

solved at any time: 

                  (3) 

If   is equal to  (   =  ), then, in that case, it has a 

straight linear motion. R becomes zero and there is no real 

rotation:  is zero.  If  = -   R becomes zero then there is a 

rotation around the centre of the wheel axis.  

If   = 0, then there is a rotation along with the left wheel. In 

this scenario, R = 1/2. This is also true when  is equal to zero. 

The next section will present the methodology employed in 

details. 

III. METHODOLOGY 
A. G-mapping  

G-mapping is one of the most accepted SLAM algorithms in 

robotics. To sort out laser data it uses a filter along with a Rao-

Blackwellized particle filter. Then it takes into account the 

altered movement and new observations of the robot.The overall 

methodology is presented in Fig. 2. 

In this way, the algorithm reduces the probability of robots pose 

uncertainty in the prediction of filtering. Besides, it selectively 

performs repetitive sampling operations, reducing the setback of 

particle depletion. 

For SLAM the basic idea of the Rao-Blackwellized particle 

filter is to calculate the posterior probability 

 regarding probable trajectories  of a 

robot based on its observations  and Odometery 

measurements  and to make use of it posterior to calculate 

posterior in trajectories and maps. 

 

         (4) 

 

To calculate the posterior  in possible 

trajectories, Rao-Blackwellized uses a particle filter where each 

map is related to each sample. Each map is constructed based on 

the observations  and path  represented by the 

subsequent particle. The robot's trajectory changes with the 

movement of the robot. And due to this reason, the proposal 

distribution is selected equal to the probabilistic Odometric 

motion pattern. For Incremental mapping Rao-Blackwellized 

SIR (Sampling Importance Resampling) filter processes the 

available observations and Odometer readings. This was 

performed employing updating a set of samples representing the 

subsequent posterior concerning the maps as well as vehicle 

trajectories. 

1) Sampling 

To get next-generation particles  from the current 

generation   is done through sampling from a proposal 

distribution . 

 

 

2) Importance weighting 

Each particle is assigned a weight based on its importance, 
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                 4(i)          

 This implies the fact that the proposed distribution in common 

is not identical to the proper distribution of successor states. 

3) Resampling 

A sample of high weight  particles normally replaces particles 

having low importance regarding the weights. This is a 

necessary step because simply a limited amount of particles are 

utilized to estimate a constant distribution. Moreover, in 

situations where the exact distribution differs from the 

proposed, Resampling allows applying particle filter. 

4) Estimating Map 

The consequent map estimate  for each pose sample  is 

calculated depending on the path and the past of 

observations . 

 

 
 
FIGURE 2. Flowchart of RBPF 

 
B. Firefly Algorithm 

The rules that the firefly algorithm follows are as follows: The 

relative brightness between fireflies can be expressed by the 

following formula: 

                            (5) 

Where  shows the value of the highest brightness of the firefly, 

 represents the light intensity absorption coefficient, which 

decreases as the distance increases, and  is the spatial 

distance among fireflies. The attraction formula between 

fireflies is described as: 

                      (6) 

Where  show the maximum firefly attraction. 

At the time when fireflies a and b are attracted to each other, the 

update formula is expressed as: 

    (7) 

Where  represents the step factor while rand is a random 

number whose value range is between 0 and 1. 

Brightness and attractiveness are the two key parameters that 

the firefly contains. The position and direction of firefly are 

determined by the brightness, while the attraction shows the 

range of movement of firefly. Particle optimization is achieved 

by continuously updating brightness and attraction. 

 

C. Improved Firefly Algorithm 

In the firefly algorithm, the position update is computationally 

very expensive, this is not favourable for the performance 

efficiency of the algorithm. The attraction among particles a and 

b must be recalculated in every position update with the highest 

attraction, distance, absorption coefficient of light intensity as 

well as other features. Here In this research, an enhanced idea 

employing global optimal particles to interrelate with each other 

is proposed [29]. Computationally complexity can be reduced 

efficiently by this idea. 

The sampled particles are taken as individual fireflies, and the 

firefly brightness is taken as the existing particle weight. 

                       (8) 

Where  represents the distance among particles a and , 

 shows maximum attraction and  is the maximum light 

intensity absorption coefficient. 

     (9) 

Where  represents the particle state value at time t,  is 

particle maximum attraction,  represents the step factor, rand 

is a random whole number ranging between between 0 and 1 

and  represents global optimal particle. 

IV. RESULTS 

Grip map matching information is analyzed using three different 

optimization techniques. And comparative analysis is being 

drawn among them. The predicted scanned point cloud in the 

grid map is compared with the known point cloud dataset [29]. 

Column vector is calculated as the distance matrix from 

ineffective point cloud to the existing point cloud, a dimension 

of which is 5500, maximum attraction (β0) is 1, step factor (α) is 

0.001, ϒ (light intensity absorption coefficient) is 1, Number of 

particles of RBFP are 20 and number of firefly iterations is 10. 

The overlap ratio of a match can be attained by summing the 

distance matrix which is also called an evaluation function. The 

distance is inversely proportional to overlap ratio of two maps 

i.e. smaller distance will result in a higher overlap ratio. Particle 

overlap ratio by applying the gradient descent algorithm is 

shown in Fig. 3. Figure 4 shows Particle overlap ratio by ANT 

colony algorithm.  

Sampling 

Scan Matching 

Estimating Map 

Resampling 

Importance 

weighting 

Particle 

Prediction 
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FIGURE 3. Particle overlap ratio by applying a Gradient Descent Algorithm 

 
FIGURE 4. Particle overlap ratio by ANT Colony Algorithm 

Similarly the result in Fig. 5 shows Particle overlap ratio by 

firefly algorithm. A Comparison between all algorithms for 

particle overlap ratio is shown in Fig 6. 

The results shown in Fig. 6 exhibits that employing firefly 

algorithm, the overlap ratio of particles is reasonably small 

which have a positive implication on the matching effect of 

the map as well as enhancing G-mapping capacity. The 

optimization technique have many real world applications 

such as, for instance ,employing mobile robots in search and 

rescue operations, unmanned vehicle (UAV) deployment in 

precision agriculture for spraying, underwater robot 

navigation for mineral exploration etc. In this study, mobile 

robot particle degradation and state estimation accuracy have 

been improved via G-mapping modelling, on the basis of Rao-

Blackwellized particle filter. For this reason, a comparative 

analysis of three different optimization techniques namely 

gradient descent, ANT colony, and firefly algorithm techniques 

were chosen for investigation. 

 
FIGURE 5. Particle overlap ratio by applying FireFly algorithm 

 
FIGURE 6. Comparison between all algorithms for particle overlap ratio. 

All the above mention techniques exhibits decent results 

employing Rao-Blackwellized Particle filter, however firefly 

algorithm shows extended performance in reducing 

navigation inaccuracy, particle degradation, reducing the 

number of particles, and ensuring mobile robot safety in a 

challenging and unstructured environment. In future, an 

investigation on feedback loop closure for navigation map 

accuracy is in progress. 
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