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Abstract- Intelligent transportation systems (ITS) have emerged as the optimal solution to address urban mobility challenges. 

However, to effectively implement ITS, detailed traffic flow statistics are imperative. Various solutions have been proposed, 

including intrusive/non-intrusive sensors and compute vision-based solutions. However, these solutions have limitations in the 

number of measured traffic flow parameters, cost or performance under different traffic conditions. To overcome these 

limitations, we propose an Internet-of-Video-Things (IoVT) based solution. The sensor node (fabricated using Raspberry Pi 

Zero W, Pi camera, power bank, and Wi-Fi device) can live-streaming roadside traffic video to a remote Dell server located at 

our lab with Camlytics (commercially available traffic analysis software) installed. The proposed solution was field tested with 

a 45-minute live-streamed video of 720p at 25 frames per second. Results show that the proposed solution can measure more 

traffic flow parameters than intrusive and non-intrusive sensors, with an accuracy of 84.3% for vehicle count and speed 

estimation. Other parameters were also calculated, such as time/distance headway, spatial/temporal densities, heat maps, and 

trajectories. Additionally, the proposed solution can count pedestrians with an accuracy of 76.3%. 

 

Index Terms-- Traffic flow characterization, Raspberry Pi Zero W, Video streaming, intelligent transportation system, IoVT. 

 

I. INTRODUCTION 

Urbanites' share of the world population is projected to increase 

from 55% to about 68% by 2050 [1, 2]. With this increasing 

urbanization, the efficient movement of people and goods has 

become the most pressing challenge in achieving liveable smart 

cities. Challenges associated with urban mobility range from 

ambient air pollution, traffic congestion, accidents, and lost 

productivity, to name a few. For example, 29% of greenhouse gas 

(GHG) emissions are attributed to the transport sector [3, 4]. 

These air pollutants, such as carbon dioxide, carbon monoxide, 

nitric oxides, sulphur dioxide, and particulate matter (PM), 

exacerbate health problems such as pulmonary, cardiovascular, 

respiratory, and cancer. Resulting in about 4.2 million premature 

deaths in 2016 alone [5]. Furthermore, inefficiencies in road 

networks, such as traffic congestion, are the root cause of 

psychological health problems such as driver stress, fatigue, and 

aggressiveness. As an example of lost productivity, it was 

reported that an average USA commuter wastes about 42 hours 

and 19 gallons of fuel each year stuck in traffic congestion. 

Costing each commuter about $960 per year or about $38400 

over a 40-year career [6]. 

A. RESEARCH CONTEXT 

To overcome these challenges, intelligent transportation system 

(ITS) based solutions are being proposed for efficient planning, 

designing, and managing road networks. One of the basic 

building blocks for providing ITS-based solutions is real-life 

vehicular flow characterization. Vehicular flow characterization 

is traffic parameters estimation categorized as either microscopic 

(vehicle count, speed, classification, time/distance headway, and 

spacing) or macroscopic (traffic volume, speed, density, heat 

maps, and trajectories). These parameters provide insight into 

local traffic flow behaviour (such as speed vs flow, density vs 

speed, and density vs flow, to name a few). Furthermore, these 

parameters are imperative for calibrating and validating 

mathematical traffic flow models and simulation software for 

better road network design and management [7, 8, 9, 10, 11]. In 

the existing literature, varying solutions have been proposed for 

vehicular flow characterization and are categorized as either 

intrusive or non-intrusive sensors [12, 13]. Though these 

solutions have marked improvement over manual counting, they 

have limitations. 

Second-generation intrusive sensors (inductive loops, 

pneumatic tubes, piezoelectric and magnetic sensors) are 

expensive and crumb some to install and maintain [12]. As the 

name suggests, these sensors are embedded in the road surface, 

thus damaging it and causing traffic disturbances during 

installation and operations. Intrusive sensors, though highly 

accurate, can only measure traffic count and are thus severely 
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limited in their scope. In the complex configuration of multiple 

sensors, intrusive sensors can classify vehicle types. However, 

accuracy under sensors cannot detect pedestrians and 

animals\human driven in congested and heterogeneous traffic 

conditions is severely hindered by intrusive carts [13].  

Third-generation non-intrusive sensors provide more 

granular traffic flow data than intrusive sensors with fewer 

limitations [12]. Non-intrusive sensors are inherently wireless 

sensor networks based on different sensor technologies (such as 

accelerometer, acoustic, ultrasonic, infrared, radar, LIDAR, 

Bluetooth, and Wi-Fi) [12,13]. These sensors are a marked 

improvement over intrusive sensors with their ability to provide 

more traffic flow parameters such as vehicle count, speed, 

classification, and lane occupancy. However, their performance 

is severely compromised under congested and heterogeneous 

traffic conditions. Furthermore, their performance is affected by 

varying environmental factors such as temperature variation, 

wind, snow, fog, rain, and sunlight intensity [12]. Non-intrusive 

sensors cannot detect pedestrians, bicycles, and animal/human-

driven carts. 

These solutions can measure detailed traffic flow 

parameters under all (congested, uncongested, homogeneous, and 

heterogeneous) traffic conditions. Furthermore, compared to non-

intrusive sensors, the impact of environmental factors on 

computing vision-based solutions is less detrimental. Both edge 

and distributed compute vision-based solutions have been 

proposed in the existing literature. However, compute vision-based 

edge computing solutions are limited because of resource-

constrained embedded computing boards. These proposed 

solutions can measure at most two traffic flow parameters, either 

count\classification or count\speed [14]. 

B. OVERVIEW AND SCOPE 

To overcome the limitations of intrusive, non-intrusive sensors and 

compute vision-based edge computing solutions, we have 

proposed a low-cost and real-time internet of video things (IoVT) 

based solution for traffic flow characterization. Salient features are 

its low-cost, reliability, energy efficiency, easy installation, and 

maintenance. The sensor node of the proposed solution is 

fabricated using Raspberry Pi Zero W (RPi ZW), Pi camera, power 

bank, and Wi-Fi device. Utilizing the sensor node, roadside traffic 

video is captured, encoded, and live-streamed to a Dell desktop 

located at our university's lab. Camlytics, a commercial traffic 

monitoring software installed on dell desktops, is employed for 

traffic flow characterization in real-time. The proposed solution 

can operate under all traffic conditions (such as congested, 

uncongested, homogenous, and heterogeneous). Furthermore, it 

can measure detailed traffic flow parameters such as vehicle count, 

speed, volume, temporal\spatial density, time/distance headway, 

heat maps, and trajectories with 84.3% accuracy. As opposed to 

intrusive and non-intrusive sensors, our proposed solution has the 

added capability to count pedestrians with an accuracy of 73.6%.  

 The rest of the paper is organized such that section II 

summarizes related work. The system architecture of the 

proposed solution is detailed in section III, with results presented 

in section IV. Lastly, the conclusion and future work are 

presented in section V. 

 

 

II. RELATED WORK 

An overview of IoVT solutions for vehicular flow 

characterization proposed in existing literature has been presented 

in this section. As summarized in this section, to the author's 

knowledge, no solution can provide as many traffic flow 

parameters as the solution proposed in this work. 

 In [15], a solution was proposed for vehicle counting and 

classification under congested traffic conditions. Using two vision 

systems (each fabricated using an RPi and Pi camera) a 3D point 

cloud point was generated. Machine learning algorithms K-Nearest 

Neighbor (KNN) and Support Vector Machine (SVM) were used 

for vehicle classification into two types (cars and motorcycles). 

Reported accuracy is relatively high (95.8% for both SVM, and 

KNN), with SVM performing better in the case of motorcycle 

classification. Balakrishna et al. proposed a real-time IoVT-based 

solution for traffic flow characterization [16]. The proposed system 

consisted of RPi 3B and USB camera, streaming video to a cloud 

platform through Wi-Fi. Traffic flow was characterized using an 

algorithm developed in Simulink, MATLAB 2016A. 

In [17], a UAV (Unmanned Air Vehicle) based solution was 

proposed for emergency management. The proposed system was 

capable of live video streaming to a cloud platform for better and 

faster decision-making in emergencies. RPi ZW and Pi camera-

based platforms were employed for video streaming, with end-to-

end latency below 200 milliseconds (ms) per frame. An 

autonomous UAV-based solution was proposed for static on-

ground vehicle counting, classification, and pedestrian counting 

[18]. Live video streaming to a laptop for image processing was 

achieved through RPi ZW and Pi camera over Wi-Fi. In field 

testing, accuracy varied from 88.9% to 96%. Reasons attributed to 

this limited accuracy were (1) the limited accuracy of the UAV's 

GPS and (2) the inability of the UAV to stay on the flight path 

under windy conditions. In [19], a UAV-based IoVT solution for 

vehicular flow characterization was proposed. The proposed 

solution can estimate speed and traffic volume. Kanade–Lucas–

Tomasi feature tracker and Cascade Haar were employed with 

neural network methodology for object tracking. 

In [20], an IoVT base solution was proposed with the 

capability to measure vehicle count, speed, density, time headway, 

time-space diagrams, and trajectories. The sensor node was 

fabricated using RPi 4 and Pi camera while employing Wi-Fi for 

live video streaming. Before streaming, the video was compressed 

using the H264 compression method. The sensor node's power 

consumption and fabrication cost were estimated at 900 mA per 

hour and $50, respectively.  

An IoVT-based solution for vehicular flow characterization has 

been proposed in this work. The novelty of our proposed solution 

as compared to already proposed solutions in existing literature are: 

● Unlike intrusive\non-intrusive sensors, the proposed 

solution can operate under all (including congested and 

heterogeneous) traffic conditions. Furthermore, the 
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proposed solution can measure more traffic flow 

parameters with easier installation and maintenance [22]. 

● Capability to provide detailed (eight) traffic flow 

parameters as compared to proposed solutions in existing 

literature such as [15, 18, 16, 20, 19]. The measured 

parameters are traffic count, speed, flow, time/distance 

headway, spatial\temporal densities, heat maps, and 

trajectories with an accuracy of 84.3%. 

● As opposed to existing solutions, the proposed solution 

has the added capability to count pedestrian crossings and 

their impact on traffic flow. Pedestrians' counting 

accuracy was measured at 76.3%.  

● With fabrication costs under $40, the proposed solution is 

low-cost (monetary and data bandwidth) compared to 

other solutions [15, 16, 20]. This provides the option to 

scale it to form a wireless sensor network. 

● Compared to the most power-efficient solution in existing 

literature [20], the proposed solution's current 

consumption has been optimized. This optimization was 

achieved by employing Raspberry Pi Zero W, thus 

increasing operational time by fourfold. 

 

III. SYSTEM ARCHITECTURE 

In this work, an IoVT-based solution has been proposed, 

which can be mounted anywhere over a road to characterize traffic 

flow parameters such as vehicle count, speed, volume, 

time/distance headway, spatial\temporal densities, heat maps, and 

trajectories. The proposed solution has the added capability to 

count pedestrians and the effect of their crossings on traffic flow. 

The objective in the design phase was to propose a low-cost and 

real-time solution that works under all (congested, un-congested, 

homogeneous, and heterogeneous) traffic conditions. 

The proposed solution can be subcategorized into four modules: 

(1) Sensor Node, (2) Video Streaming, (3) Current Consumption, 

and (4) Camlytics. The system architecture of the proposed 

solution is detailed in Fig. 1. 

 
FIGURE 1.   System Architecture of the proposed IoVT based solution 

 

The internal working of the proposed system can be 

understood in Fig. 1. The raw video footage is captured through Pi 

Camera integrated with the RPI ZW through CSI Connector. The 

roadside video of 720p at 25 fps is then fed into the FFMPEG 

software, configured to encode the captured video using the H264 

hardware encoder of the RPi Zero W. Using FFMPEG software, 

the resultant compressed H.264 video is formatted to Flash Video 

(.flv) and forwarded to the NGINX web server hosted by the RPi 

ZW. 

The NGINX web server is configured to accept the incoming feed 

from FFMPEG and make it available for streaming using the HTTP 

protocol. However, as the NGINX web server is hosted locally on 

RPI ZW, it cannot be accessed remotely from outside the local area 

network. It necessitates port forwarding and assignment of a unique 

IP address using DDNS. This is achieved using NGROK tunnel 

service, which provides a secure HTTP link for video streaming to 

Dell Desktop with Camlytics installed for traffic flow analysis. 

A. SENSOR NODE 

Although in existing literature, RPi-based video streaming 

solutions for traffic flow characterization have been proposed [15, 

16, 20]. However, to keep overall costs (both monetary and power 

consumption) low, RPi ZW [21] has been employed in the 

proposed solution. RPi ZW is a small, compact single-board 

computer costing about $18, and its salient features are a 1GHz 

single-core ARMv6 CPU, 512MB RAM, CSI camera, and 802.11n 

wireless LAN support.  

Pi Camera Module v2 has been integrated with RPi ZW through a 

specifically designed CSI port for roadside video capturing. The Pi 

Camera Module v2 has a high-quality Sony IMX219 8-megapixel 

image sensor, with custom designed add-on board for RPi. It can 

capture 3280x2464 pixels static images while providing support to 

capture videos of 1080P @30 fps (frame per second), 720P @60 

fps, and 640x480 @ 60/90 fps. 

 

FIGURE  2.    System hardware (a) Sensor Node (b) Sensor Node installed over 
the pedestrian bridge for evaluation 

B. VIDEO STREAMING 

For circumventing resource-constrained embedded boards, IoVT 

based solutions are emerging as optimum solutions for different 
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applications. These applications range from smart cities, 

surveillance, remote sensing, healthcare, and traffic flow 

characterization. These connected devices are known as the 

"Internet of Video Things" (IoVT). With 80% of internet traffic 

consisting of multimedia data, it is estimated that this share will 

grow even further as the number of IoVT will grow to 13 billion 

by 2030 [23]. 

In the existing literature, low end-to-end video streaming 

for time-critical applications employing resource-constraint 

hardware is few [24]. Most proposed solutions are cloud-based, 

using centralized cloud services providers such as Amazon web 

services, Azure, and google cloud. However, a fully distributed 

P2P (Point-to-Point) communication approach has been employed 

in this work. The most important consideration was low-latency 

video streaming, as communication is directly between source and 

sink, thus making unnecessary proxying at intermediates nodes 

redundant. However, barriers must be overcome to achieve P2P 

video streaming over the internet to ensure lag-free and low-

latency streaming. Contrary to common belief, most of the video 

streaming delay can be attributed to video capturing, encoding, and 

decoding, with only 10% of the delay attributed to the choice of an 

intermediate IoT platform [24]. 

For this work, efforts have been made to propose a low latency, 

power, and data-optimized video streaming solution, as can be seen 

in Fig. 2. For better understanding, this section has been 

subcategorized into (1) FFmpeg, (2) Encoding, and (3) IoVT 

streaming platform. 

FIGURE 3.   Flow chart of the proposed system. 

 

a) FFMPEG 

FFmpeg [25] is a free and open-source suite of libraries for 

handling audio, video, and multimedia streams. FFmpeg libraries, 

through command-line instructions, can edit, encode, decode, 

transcode and stream multimedia over the internet. It can convert 

between arbitrary sample rates and resize video on the fly with a 

high-quality polyphase filter. In this work, FFmpeg is configured 

to capture a live video stream through a Pi camera integrated with 

RPi ZW using the following command. 

 

ffmpeg -f v4l2 -re -video_size 1280x720 -r 25 -vsync 1 -i 

/dev/video0 -c:v h264_omx -b:v 10000k  -f flv 

"rtmp://localhost/live/stream" 

 

Using the above command, the video is captured and resized to 

1280x720 pixels at 25 fps. The video is then encoded using RPi 

ZW inbuilt hardware H264 encoder. Using RPi ZW's inbuilt Wi-Fi 

module, the encoded video is streamed to the web server in .flv 

video format. 

b) VIDEO ENCODING 

The most pressing limitation while employing an IoVT-based 

solution for traffic flow characterization is the bandwidth 

requirement for video streaming. However, this limitation can be 

mitigated using video encoding, as demonstrated in this work. 

Video encoding is video transformation through changes in the 

format and applying compression techniques. It is essential for 

efficient transmission over the internet in terms of quality, energy, 

and data bandwidth consumption. 

From a video encoding perspective, H.264 and MJPEG are two of 

the most common compression standards. However, H.264 has 

replaced MJPEG because of its improved coding efficiency, high 

quality, and reduced frame losses [26, 24]. 

The main difference between the two is that MJPEG compresses 

individual frames. H.264 compresses video across the frames, thus 

saving a significant amount of bandwidth. H.264 provides up to 

80% and 50% reduction in data bandwidth requirement compared 

to MJPEG and MPEG4 [26]. In this work, a forty-five-minute-high 

quality roadside video encoded with H.264 encoder was live 

streamed. The total bandwidth required to stream the video was 

measured at 600 Megabytes. This is a marked improvement over 

MJPEG and MPEG codecs, as seen in Fig. 4. Locally, the 60 

gigabytes internet data plan costs about $12.04. Further breakdown 

of the internet data plan means it costs $0.2007 to stream 1 

gigabyte. In our work, the total cost to stream a one-hour video was 

estimated at $0.283 as seen in Fig. 4. 

FFmpeg [25] is a free and open-source suite of libraries for 

handling audio, video, and multimedia streams. FFmpeg libraries, 

through command-line instructions, can edit, encode, decode, 

transcode, and stream multimedia over the internet. It can convert 

between arbitrary sample rates and resize video on the fly with a 

high-quality polyphase filter. In this work, FFmpeg is configured 

to capture a live video stream through a Pi camera integrated with 

RPi ZW using the following command. 
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FIGURE 4.   Data bandwidth requirement and cost per hour for live-streamed 

video using different Codec standards 
Though a more advanced standard for video compression 

HEVC (High-Efficiency Video Coding/ H2.65) has become 

available. However, H.264 standard is chosen because RPi ZW 

provides inbuilt hardware H.264 compression capabilities. 

Hardware encoding is more efficient than software encoding in 

terms of computation resources. For example, Mori et al. reported 

that encoding a video of 640x480 resolution @ 30fps with RPi 

ZW's hardware H.264 encoder results in 58 times less current 

consumption than software encoding [23]. 

c) IOVT STREAMING PLATFORM 

As reported in [24], about 10% of video streaming delays are 

attributed to an intermediate IoT platform choice. Hence 

employing a fast web server and IoT platform is paramount for 

real-time low-latency video streaming. For this work, we have 

chosen NGINX, a free and open-source IoT platform for web 

serving, caching, reverse proxying, load balancing, and multimedia 

streaming [27]. It is known for its high performance, stability, rich 

feature set, simple configuration, and low resource consumption 

for live-video streaming. After video compression using the H.264 

standard, FFMPEG streams the video to NGINX, as shown in Fig. 

2. A local host address inside a local area network can access this 

live video feed. 

However, NGROK has been employed to make the live video 

stream accessible outside the local area network. NGROK is a 

multiplatform tunnelling, reverse proxy software that establishes 

secure tunnels from a public endpoint, such as the internet, to a 

locally running network service. Through NGROK, a secure tunnel 

to the local host of the web server was established, thus making 

redundant port forwarding and dynamic DNS. Global access to a 

live video stream became possible through NGROK's link on port 

80. The most pressing limitation while employing an IoVT-based 

solution for traffic flow characterization is the bandwidth 

requirement for video streaming. However, this limitation can be 

mitigated using video encoding as demonstrated in this work. 

Video encoding is the transformation of video through both 

changes in the format and applying compression techniques. It is 

pretty much essential for efficient transmission over the internet in 

terms of quality, energy, and data bandwidth consumption. 

C. CURRENT CONSUMPTION 

Power management is a basic consideration while designing 

embedded systems to keep them operational with minimum human 

intervention. In this context, the sensor node was fabricated with 

RPi ZW to keep overall current consumption low. Furthermore, 

unnecessary RPi ZW modules such as HDM and LED are kept 

turned off. As reported in [23], H.264 hardware encoder consumes 

58 times less energy than software-based H.264 encoders. Hence, 

an inbuilt H.264 hardware encoder was employed for video 

encoding to conserve the current consumption of the sensor node. 

The sensor node's current consumption breakdown is tabulated in 

Table 1 and verified using the Keweisi USB tester.  

RPi ZW consumes 100 mA current (with HDMI, LED, and Wi-Fi 

modules turned off) when fully operational. Pi camera's current 

consumption was measured at 60 mA when turned on and captured 

1280x720 resolution @ 25 fps video. RPi ZW's Wi-Fi module 

consumes a further 60 mA when streaming video over the internet. 

Overall, the sensor node's current consumption is measured at 220 

mA as seen in Table I. 

 
TABLE I 

SENSOR NODE'S CURRENT CONSUMPTION BREAKDOWN 

RPi ZW State Current Consumption 

Idle (HDMI off LED off Wi-Fi off) 100 mA 

Pi Camera 60 mA 

Wi-Fi ON (Video Streaming) 60 mA 

Total Power 220 mA 

 

The sensor node is powered through a 10,000 mAh Anker Power 

Core (model number A1263) power bank with a 5V/2.1A output 

port. Hence the total operational time of the sensor node is 

estimated at: 

Sensor node's Operational time = 10,000 mAh / 220 mA = 45.4 

hours. 

D. CAMLYTICS SOFTWARE 

Camlytics is a multi-camera traffic flow analytic software available 

commercially [28]. Salient features of Camlytics range from 

vehicle and pedestrian counting to traffic analytics, motion alarms, 

and traffic event recording to name a few. Camlytics uses APIs to 

send the information extracted from input video feed or streaming 

link to an excel-sheet file. Since it is commercial software, 

computer vision algorithms are proprietary. Camlytics is a low-

budget and lightweight software, able to work on Windows-

installed PCs. The minimum system requirements required to run 

Camlytics are 2 GB of Ram, 200 GB of Hard Drive Space, and at 

least a Core i3 Processor to run 4 cameras simultaneously. 
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IV. RESULTS 

In this work, we have proposed a real-time and low-cost IoVT 

solution for measuring microscopic (count and speed) and 

macroscopic (road density, flow, time/distance headway, 

spatial/temporal densities, heatmaps, and trajectories) traffic flow 

parameters. For field testing, a sensor node was installed on a 

pedestrian bridge overlooking the main thoroughfare "University 

Road" in Peshawar, Pakistan, as can be seen in Fig. 5. This road 

was chosen because of its status as the main arterial road in 

Peshawar city with major universities, hospitals, and 

governmental agencies located on it. The real-time roadside 

video was live-streamed through an installed sensor node to a 

Dell desktop with Camlytics software. The live-streamed video 

was 45 minutes from 5:00 PM to 5:45 PM on Saturday, February 

29th, 2022, as can be seen in Fig. 5. Camlytics was running on a 

Dell desktop (i5 quad-core processor, 4 GB RAM) with Windows 

10 operating system. 

 
FIGURE 5 (a).   Snapshot of streamed video in Camlytics installed on a Dell 

desktop. (b) Events generated during video analytics by Camlytics 

 
Camlytics provides simple generation lines and zones for 

traffic analysis, as seen in Fig. 5(a). Camlytics provides the 

capability to create these event generation lines and zones through 

drag-and-drop functionality. For traffic analysis, two event 

generation lines (denoted as Enter and Exit, as seen in Fig. 5(a)) 

were drawn 14 m apart. These event generation lines can be 

assigned directions to generate an event for traffic flow analysis. 

As shown in Fig. 5(a), the green inward and outward arrows on 

Enter and Exit lines generate events whenever a vehicle enters or 

exits these two event generation lines, respectively. A third event-

generating line, "Pedestrian Count," was created to count 

pedestrians on the walkway, as can be seen in Fig. 5(a). Green 

inward and outward arrows on the "Pedestrian Count" event 

generation line count pedestrians crossing in either direction. 

An event is generated every time an object (vehicle or pedestrian) 

crosses one of the event generation lines. Event Id, line type 

(Enter or Exit), and the time of line crossing are logged into a 

".CSV" file, as can be seen in Fig. 5(b). 

A. VEHICLE COUNT AND TEMPORAL DENSITY 

During 45 min of live-streamed video, Camlytics detected 843 

vehicles, as seen in Fig. 5(b). To check the accuracy of the 

proposed solution, manual counting was undertaken in the same 

live-streamed video. In manual counting, a total of 1000 vehicles 

were detected. Thus, the proposed system performed with 84.3% 

accuracy. Pedestrian detection was undertaken in the same video 

as in Fig. 5(a). A total of 158 pedestrians were detected through 

Camlytics, whereas a total of 207 were detected in manual 

counting. Thus, the proposed solution's accuracy rate for the 

pedestrian count was 76.3%. The underlying reasons were 

observed for miss-detected vehicles and pedestrians: 

1. Some undetected vehicles were counted at the 'Enter' line 

but not at the 'Exit' line or vice versa. 

2. Some of the miss-detected vehicles were moving above 

speed limits. 

3. Two vehicles or pedestrians passing exactly at the same 

time over event generation lines were counted as one. 

Compared to intrusive and non-intrusive sensors, this 

accuracy rate may seem low. However, image processing-based 

solutions can count all vehicles (such as bicycles, bikes, three-

wheelers, and animal/human-driven carts) and pedestrians. As 

image processing techniques evolve, this accuracy will improve 

further still. 

For accuracy, miss-detected vehicles were not considered in 

vehicle count, temporal/spatial densities, time/distance headway, 

and trajectory calculations, as reported in the rest of this section. 

Temporal density is the number of vehicles per unit of road length 

at specific intervals. The 45-minute vehicular temporal density on 

the 14 m road segment has been divided into 1 min time segments, 

as can be observed in Fig. 7. It was observed that the highest 

temporal density of 24 vehicles/min was recorded at 5:03 PM and 

5:13 PM. At the same time, the lowest temporal density was 

observed at 5:14 PM, as shown in Fig. 6. 

B. AVERAGE SPEED 

Individual vehicle speed is the time required to traverse a unit 

distance, given by the following equation. 

 

𝐼𝑛𝑑𝑖𝑣𝑖𝑠𝑢𝑎𝑙 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑆𝑝𝑒𝑒𝑑 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐸𝑥𝑖𝑡𝑇𝑖𝑚𝑒 − 𝐸𝑛𝑡𝑒𝑟𝑇𝑖𝑚𝑒

            (1) 

 
FIGURE 6.   Temporal density on 14 m road section on Saturday, February 

29th, 2022. 
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Where EnterTime represents the time when a vehicle crosses the 

'Enter' event generating line represented as "Enter" in Fig. 5(a). 

ExitTime represents the time when a vehicle crosses the "Exit" 

event generation line as can be seen in Fig. 5(a). Distance 

represents the distance between these two-event generator lines 

(Enter, Exit), which in our experimental setup is 14 m. To find the 

average speed, the following equation has been employed. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑆𝑝𝑒𝑒𝑑 =  ∑
𝑆𝑖

𝑁

𝑁

1

                   (2) 

 

The subscript' i' denotes the vehicle number, while N is the total 

number of vehicles during each minute of the observed period. Fig. 

7 represents the average vehicular speed on the 14 m road segment 

under observation. As shown in Fig. 7, the lowest average speed 

recorded at 5:28 PM was 5.05 m/s, while the highest average speed 

recorded at 5:12 PM was 12.27 m/s. 

C. TRAFFIC FLOW 

Road density (K) is the number of vehicles (N) per unit of the road 

segment. The following equation represents it. 

 

𝐾 =
𝑁

𝐿
                                     (3) 

 

In this work, the unit length of the road segment is 14 m. This is 

the distance between two event-generating lines (Enter & Exit), as 

seen in Fig. 5. In the existing literature, different time segments are 

considered when counting vehicle numbers (N). For this work, 45 

min live streamed video is divided into 1 min time segments. 

 

Traffic Flow rate (Q) is the rate at which vehicles pass a reference 

point on a given road segment. It is expressed in vehicles per unit 

of time and is a product of traffic density and average vehicle 
speed. The following equation represents Traffic Flow. 
 

𝑄 = 𝐾 ∗ 𝑆𝐴                                (4) 
       
According to the fundamental flow-density relationship, when the 

number of vehicles increases on a road segment under observation, 

density also increases along with the traffic flow. Similarly, a 

reduction in density results in a reduction in flow, as demonstrated 

in Fig. 7. However, if the number of vehicles keeps on increasing 

per unit length, it reaches a condition where the speed drastically 

reduces and is jam density (maximum density). The highest density 

measured during the 1-min time segment was 1.71 veh/m at 5:03 

PM, while the lowest density was 0.64 veh/m at 5:14 PM, as shown 

in Fig. 8.  

FIGURE 7.   Average vehicle speed on 14 m road section on Saturday, February 

29th, 2022. 

 
Speed-flow relationship describes that when traffic flow increases, 

average speed also increases until it reaches the critical flow. 

Beyond this, when flow increases, the average speed decreases. 

The highest average speed observed during the 1-min time segment 

was 12.11 m/s at 5:12 PM, while the lowest average speed was 

observed at 5:28 PM at 5.05 m/s as can be observed in Fig. 8. 

Similarly, the highest traffic flow measured during the 1-min time 

segment was 19.13 veh/s at 5:13 PM. The lowest traffic flow at 

4.60 veh/s was observed at 5:44 PM, as shown in Fig. 8.  
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FIGURE 8.   Traffic flow versus average speed versus road density on a 14m 
road section on Saturday, February 29th, 2022. 

D. AVERAGE TIME AND DISTANCE HEADWAY 

Average time headway is the time difference between the arrival of 

two vehicles at a reference point on a roadway. Average time 

headway has an inverse relationship with traffic flow, and is given 

as: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐻𝑒𝑎𝑑𝑤𝑎𝑦 =
1

𝐾
                    (5) 

 

Average distance headway is the difference in position of two 

vehicles in meters. It has an inverse relationship with density (K), 

and is given as: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝐻𝑒𝑎𝑑𝑤𝑎𝑦 =  
1

𝑄
                       (6) 

 

FIGURE 9.   Average Time and distance headway on 14m road section on 

Saturday, February 29th, 2022. 

The average time and distance headway of traffic flow on the 

under-observation road segment is shown in Fig. 11. The highest 

time headway at 5:44 PM was 0.22 s while the lowest time 

headway at 5:13 PM was 0.05 s. The largest average distance 

headway at 5:14 PM was 1.55 m while the lowest average distance 

headway was observed at 5:03 PM and 5:13 PM as 0.58 m as 

shown in Fig. 9. 

E. AVERAGE TIME AND DISTANCE HEADWAY 

Vehicle trajectories measurements (tracks map) are the trajectories 

of all passing vehicles on a road segment. These are helpful in the 

detection of abnormal/unsafe driving behaviors and quantification 

of road-vehicle-driver system dysfunctions. All detected vehicle 

trajectories are aggregated on observation 14 m road segment and 

can be seen in Fig 10(a). These trajectories are useful for analyzing 

the directional flow of vehicles and pedestrians on a road. 

 

FIGURE 10 (a).   Vehicle trajectories on the 14 m road section on Saturday, 
February 29th, 2021. (b) Heat map of 14m road section on Saturday, February 

29th, 2022. 

F. DENSITY MAPS 

Density maps can provide an effective visual summary of traffic 

flow on a given road segment. It can synthesize traffic flow data in 

pictorial form, thus identifying parts of road segments with the 

highest concentration of vehicles and pedestrians. This 

concentration is depicted through colour schemes (red, yellow, and 

green), with red representing the highest concentrated areas and 

green colour with the lowest concentration of objects. In other 

words, red represents the road segment with the highest activity 

and green with the least, as shown in Fig. 10(b). Fig 10(b) presents 

the heterogeneous traffic behaviour with the highest activity in the 

leftmost lane. 

V. CONCLUSION 

This work proposes a low-cost and real-time IoVT-based solution 

for traffic flow characterization. The following are the main points 

concluded in this work. 

 The sensor node is fabricated using RPi ZW, Pi camera, 

Wi-Fi device, and 10,000 mAh power bank with an 
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overall cost of $40. The sensor node can live stream 

roadside traffic video to a Dell desktop at our lab with 

Camlytics installed. 

 To conserve the sensor node's current consumption and 

overall data bandwidth requirements, streamed video is 

encoded using RPi ZW built-in hardware H.264 encoder.  

 The proposed sensor node can operate for 45.4 hours 

without human intervention, with data bandwidth (video 

streaming) cost per hour at $0.283. 

 For field evaluation, traffic flow parameters were 

measured on a main arterial road with an accuracy of 

84.3%. Unlike intrusive/non-intrusive sensors and edge 

computing solutions, detailed traffic statistics (such as 

vehicle count, speed, flow, time/distance headway, 

spatial\temporal densities, heat maps, and trajectories) 

were measured under congested and heterogeneous 

traffic conditions.  

 The true novelty of the proposed solution is its capability 

to count pedestrians with an accuracy of 76.3%. 

 

In the future, we plan to install multiple sensor nodes in a connected 

network. Data analytics will analyze traffic behaviour at complex 

road configurations (intersections, roundabouts, and junctions). 

Transportation engineers can employ analyzed data for better 

planning, designing, and managing urban road infrastructure. 
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