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Abstract- A CBC (complete blood count) is essential to a thorough medical evaluation. The practice of medicine has had a 

significant impact on popular methodologies, such as manual counting and automated analyzers. The shape of blood cells and 

other cellular characteristics are highly sensitive to contamination levels in the human body. Tiny blood cell images are 

studied to spot disease and deviations from the norm that may indicate internal contamination. Correct cell segmentation 

enables more precise and powerful disease detection. Examining blood cells under a microscope is an important part of any 

pathological investigation. It emphasizes the examination of the correct malady after pinpointing its precise location and then 

ranking its anomalies, which plays a crucial role in determining the nature of a patient's condition, planning treatment, and 

evaluating the outcome of that treatment. Initially, the complete blood count (CBC) test of the patient is carried out if the 

report suggests that the blood is abnormal than the blood is poured on the strip and blood is stained out through the addition 

of coagulant. Expert hematologists are in short supply, particularly in underdeveloped nations, and are frequently 

overwhelmed. To help them with their burden, we provide a unique method for the automated assessment of family disease 

using artificial intelligence on blood smear images in this paper. Object detection needs to be quick and good at finding 

different things in an image to be useful in real life. Object detection improvements have been made, such as the 

Convolutional Neural Network and R-CNN family. Our research employs Faster R-CNN to look for RBCs, WBCs, and 

Platelets in the Blood Cell Count (CBC) and Detection dataset. The number, shape, and other meta-information, or any 

abnormalities in the different parts of blood, could help find problems and diseases like leukemia, anemia, lymphoma, sickle 

cell disease, thrombocytopenia, and leukopenia early on. Our model is accurate enough to find a bounding box on the blood 

parts. A box is drawn along with their name around the various components of the blood smear slide. Improving the 

efficiency and precision of cell detection is possible with the aid of the revolutionary algorithm. When it comes to determining 

the identities of moving cells, the approach offers significant benefits. 
 

Index Terms-- Blood smear Images, Complete blood count, microscopic images, disease detection, RBC, WBC.  

 

 

I. INTRODUCTION 

Typically, a person's health is determined by analyzing the 

various characteristics and numbers of blood cells. Previously, 

pathologists employed manual blood cell analysis techniques. It 

could lead to errors in disease prediction, as manual methods 

rely on the experience and expertise of pathologists. A drop of 

blood is deposited on a microscope slide. A spreader slide is 

dragged rearward over the drop to distribute the blood 

throughout the slide evenly. It is recommended that the spreader 

slide be slanted at an angle of 30°–45° concerning the blood 

base slide to achieve the highest level of precision and accuracy 

in the smear. Staining is performed after the blood smear has 

been dried using an air dryer. Absolute methanol or ethyl 

alcohol is employed to restore dried smears. After that, it's 

stained with one of several different liquids, such as the 

Leishman stain, rewmanosky stain, the may-grawald giema, or 

the Wright- Giemsa stain. This preparation of stained slides is 

then examined under a microscope. The microscopic image is 

then imported into the Artificial intelligence algorithm, where 

red and white blood cells are detected. A bounding box is drawn 

against each RBC employing the Faster RCNN algorithm. After 

that, patches are retrieved from RBC images and then classified 

using a deep learning algorithm. Consequently, it is proposed 

that a system of automated image processing be developed 

using various algorithms. It means that diseases could 

potentially be predicted and detected by analyzing microscopic 

images of blood. Disease detection needs to be simplified, 

automated, and cost-effective. Thus, the components above are 

analyzed to determine the health status of humans and thus to 

detect health-related anomalies. Blood is made up (Composed) 

of red blood cells (RBCs), white blood cells (WBCs), platelets, 

and plasma., the body's most vital fluid. Human blood may be 

broken down into two distinct components: cells and platelets, 

which account for roughly 45%, and plasma, the yellow fluid 
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that makes up the remaining 55% [1, 2]. When an object or 

microorganism from the outside makes its way into the 

bloodstream, it alters the physical qualities of the blood's 

components, including their size, shape, colour, and number. 

Diseases could be detected by a variety of pathological methods 

[3]. Microscopic imaging is often crucial in diagnosing diseases 

and predicting anomalies within the body. Antibodies of 

phagocyte foreign items, healing damage, defending against 

invading pathogens, and disease immunity are all tasks that rely 

heavily on the white blood cells. The first step in diagnosing an 

illness is determining how many white blood cells are present. 

Being able to identify white blood cells is crucial in the domain 

of clinical medicine. Extraction techniques for leukocytes have 

advanced to include the following in recent years. Thresholding 

[1], Region growth [2], Fuzzy clustering [3], Watershed [4], 

Means [5], and Edge detection [6] are just a few examples of the 

more conventional algorithms that have been used to segment 

white blood cells over the past five years. Kumar, Vagoda 

utilized the K-means clustering algorithm and Amin to separate 

white blood cell nuclei based on colour space [7-9]. White 

blood cell classification employing a learning-based deep 

convolutional neural network (CNN). Utilizing Caffe as a 

foundation and manual feature extraction to characterize white 

blood cells, Chen chang developed a leukocyte classification 

system [10].  

In [11], Jia Hongfei retrieved white blood cells using a 

conventional algorithm, which was only 95% accurate when 

classifying white blood cells. White blood cell extraction 

accuracy impacts total classification accuracy. Traditional 

algorithms struggle with blood smear images because of their 

high resolution, high number of red blood cells, and the low 

number of white blood cells relative to the size of the image. 

Extracting cells manually takes a long time, a problem for large-

scale studies. Segmenting adherent cells is challenging with 

conventional algorithms due to their lacklustre anti-noise 

abilities and extensive processing. High-throughput imaging and 

other clinical applications rely heavily on the ability to detect 

cells and classify cell types from biomedical images. Single-cell 

sample classification could be accomplished by employing 

conventional machine learning and computer vision techniques. 

In contrast, analysis of multilabel samples (regions containing 

congregating cells) is more difficult since individual cell 

separation might be difficult, if not impossible (e.g., touching 

cells or overlapping cells).  

To overcome the difficulty of evaluating multi-instance 

images when studying Red Blood Cells (RBCs), We develop a 

multi-instance cell identification and classification method for 

utilization in diagnosing the family of blood diseases. The 

method starts with staining the blood sample, then blood strips 

are prepared, and smear images are visualized under an optical 

microscope. This microscopic image is then fed into the model, 

which draws a bounding box against each RBC and WBC. Then 

each RBC is drawn individually for morphological study to 

predict the family of disease. Six networks are trained to employ 

these visual attributes as inputs for multilabel prediction of 

whether or not a particular patch includes cells of a certain cell 

type. The six networks could accurately identify cell types 

presented in multi-instance picture samples because they are 

trained on patches consisting of isolated cells and cells that 

touch or overlap. Finally, we employ the results from these six 

networks to create a machine-learning classifier that could 

determine whether or not a given picture patch contains an 

aberrant cell type for utilization in SCD testing. The 

experimental outcomes prove the viability of the proposed 

architecture for autonomous cell detection and classification. 

 

II. LITERATURE REVIEW 

Due to the time and effort required for manual evaluation of 

RBC images, automatic categorization and diseased cell detection 

based on cell texture and morphological traits have emerged as a 

viable and useful strategy for Sickle cell disease (SCD) diagnosis. 

More generally, high-throughput imaging and many other clinical 

applications rely heavily on automatic cell detection and type 

classification. Several tools, such as Cell Profiler [1], Cell Track 

[2], and Study in [3], have been created for the goal of cell 

detection and classification. Deep learning-based approaches [4]-

[6] have recently demonstrated better performance in biomedical 

image analysis tasks such as cell categorization, detection, 

semantic segmentation, and counting. These techniques can 

extract more discriminative picture features with higher 

generalizability.  

The occurrence of several cells congregating together in one 

sample image patch is a recurrent difficulty, even though deep 

learning-based techniques have shown good performance in 

categorizing single-cell patches [12]-[13]. To address this issue, 

we refer to it as the "multilabel classification" problem, where it is 

difficult (due to, for example, touching cells) or impossible (due 

to, for example, overlapping cells) to entirely separate specific 

instances of those samples. Because typical classifiers are taught 

to handle a single occurrence simultaneously, multilabel samples 

are deleted [5] during training. They might lead to inaccurate 

classification results if they are included in testing data. However, 

this multilabel classification issue is crucial because overlapping 

and contacting cells are ubiquitous in microscopic images. 

CapsNet [6] is one of the multi-instance techniques developed in 

the past; it has inspired various applications due to its ability to 

analyze objects that overlap significantly. Recent CapsNet-based 

models have primarily addressed the classification problem with a 

single label [6]-[8], given that many instances of the same class 

cannot be depicted in the original CapsNet illustration.  

The multilabel RBCs classification problem is too complex for 

CapsNet to handle because of the large number of patches 

containing clusters of cells belonging to the same class. This 

research aimed to enhance Blood disease diagnosis by resolving 

the problem of multilabel classification in biomedical image 

processing. This research presents an infrastructure for cell 

detection and classification that could automatically extract image 

patches containing single or multiple cells. We then apply 

multilabel classification and aberrant cell detection to these 

regions. There are three phases to the plan put forward. We first 
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employed a Faster-RCNN to segment a tiny picture into single-

cell and multicell patches automatically. After using a bounding 

box against each red and white blood cell in the patches, we 

extract individual RBCs for morphological structure investigation 

to make disease family predictions from the resulting images. The 

following are some of the primary improvements that our method 

provides. At first, this study utilizes the Faster RCNN 

identification of cells in RBC microscopic images. Finally, we 

present a straightforward yet powerful multilabel classification 

strategy that could simultaneously categorize single-cell patches 

and groups of cell patches. Whole microscopic images are used 

for training and testing the suggested method. The proposed 

framework is effective for the automatic detection and multilabel 

classification of RBCs, as evidenced by the high accuracy 

achieved in both tasks. This is the first study to tackle the 

challenge of classifying RBCs using several labels. Various 

approaches employed for detecting blood disease are discussed 

below in Table I.  

TABLE I 

VARIOUS APPROACHES EMPLOYED FOR BLOOD DISEASE 
DETECTION 

Ref Method No of 

Images 

Accuracy Remarks 

[10] CNN, GLCM 256 BPNN 93.2% 

CNN 92.6% 

Fewer samples 

[11] ANN 473 Cases 96.5% Employing RDW, 
MCV, RDW 

[12] KNN, 

Watershed 

segmentation 

100 For 

Thalassemia 

& SCA 

80.6% 

Combined method 

was developed. 

[13] GLCM 

Features, 

ANN 

100 For IDA 75- 

81% 

Classified 4 
types of 

poikilocytes 

[14] Deformable 

U-Net 

266 For SCD 

RBC 99.12% 

Method may separate 
RBCs despite their 

fuzziness, 
clustering, or 
irregular shapes. 

[15] Multiclass 

SVM 

Deep 

Learning 

Among 

100 to 

250 

For SCD 

99.5% 

Present three 

CNN models 

with varying 
numbers of 

layers and filter 

functions. 

[16] Naive  Bayes, 

random forest 

200 96.1 % Utilized 18 
features from 
CBC reporting 

[17] Deep 

learning 

Alex Net 

750 

Single 

RBC 

For SCA 

95.9% 

Since there were 
fewer normal cells, 

specificity was 

low. 

[18] Semantic 

Segmentation 

U-Net 

96 

Sample 

For SCD 

98% 

Designed mobile 

phone microscope 

[19] SVM, MLP 

and KNN 

304 SVM 83% 

MLP 92% 

Using the RBC, 
MCV, Hb, and HCT 

parameters 

III. METHODOLOGY 

The Feature Network, the Detection Network, and the 

Region Proposal Network are the three distinct neural 

networks that go into the construction of Faster R-CNN 

(RPN) (see Fig. 1). The input image is used to create 

feature maps by the Feature Network. The network's 

output preserves the original image's form and structure. 

Convolutional layers are found in RPN, which has three 

total. BOTH bounding box regression and classification 

share a single input layer. Bounding boxes representing 

regions of interest are created by RPN. These boxes 

have a high probability of containing the objects in 

question. In addition to the bounding boxes, a value (1) 

if the object is inside the box, (0) if it is outside, and (-1) 

if it could be ignored) is also generated. During the 

testing phase, the top N proposals out of roughly 2k are 

used. The Detection Network is in charge of generating 

the final class and bounding boxes, and it receives its 

data from both the Feature Network and the RPN.  
 

 

FIGURE 1: Working Flowchart of Faster RCNN 

The Detection Network consists of four interconnected 

layers. In a layered design, the bounding box regression 
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layer and the classification layer share layers 2 and 3. To 

aid in the identification of the bounding box contained 

within an image, the Detection Network's features are 

clipped. To accomplish this, this study employs bounding 

boxes to do our cropping. This research utilized a public 

data set that included information about blood cells. There 

are 364 images of blood cells in the original data set, and 

their original resolution was 640 pixels by 480. The dataset 

includes three types of blood cells: red blood cells, 

platelets, and white blood cells. Figure 2 displays several 

database samples.  

FIGURE 2: BCCD Image Dataset 

After meticulously compiling the dataset, we discovered that it 

possesses the following traits. 1. (a) Red blood cells (RBCs) make 

up a larger percentage of human blood cells. Thus, RBSs are 

linked and often overlap in the resulting data image, while WBCs 

and platelets are typically found singly 2. The data images reveal 

that there are significant color differences only slight variances, 

which makes sense given that different cells often have distinct 

forms. Platelets are the tiniest blood cells, whereas white blood 

cells (WBCs) are the largest 3. The pictures included in this 

dataset were acquired in a controlled laboratory setting using 

high-quality medical imaging equipment. As a result, there is a lot 

of consistency between the images in terms of brightness and 

darkness.  

A uniform, uncomplicated background is used throughout the 

image. 4. Due to the field of view constraints or image clipping, 

some cell images would be cut off at the image's edges. 5. The 

dataset only contains a tiny number of photos and few total 

samples. There are 364 photos of blood cells in the original image 

data file, and each of those images has a corresponding mark file 

that labels its position and category information. We improved by 

slicing. We improved the dataset by tenfold, to ten thousand 

records, and matched the tagged files accordingly. We conducted 

our experiment using a dataset [12] of blood cell smear images. 

The Blood Cell Count and Detection (BCCD) Dataset was 

created to detect blood cells. This study employs the Keras 

implementation of Faster R-CNN to recognize the cellular 

component of blood in blood smear slide images. Keras is a 

Python library that operates on the TensorFlow or Theano 

backend [14]. Keras 2.2.4 was combined with TensorFlow 1.15.0 

for this project. Faster R-CNN was copied from the GitHub 

repository [15], where the Keras implementation was found. A 

model was trained with train frcnn.py. After a successful training 

session, train frcnn.py wrote the training weights to an hdf5 file 

and the training run's configuration to a pickle file. Using the test 

pictures supplied to the model, the inference was carried out using 

the pre-trained weights, and the settings read in when running test 

frcnn.py. You can see how our model functions in the diagram 

below. It has created bounding boxes around several image 

features and labelled them with their respective classes. 

IV. RESULT 

In this section, we present the results of our analysis. There were 

72 pictures in the test folder that was given to the model. 

Platelets, white blood cells (WBCs) and red blood cells (RBCs), 

all had their expected box boundaries included in the model. We 

compared the model's anticipated number of red blood cells, 

white blood cells, and platelets in test photos with our manual 

count. Accuracy for the RBCs was calculated at 91.83%. It's 

because it's hard to visually distinguish between individual 

erythrocytes when they're packed together in clusters like in the 

examples above. Predictions of the WBCs were accurate to within 

2.10%. White blood cells, or WBCs, are larger than red blood 

cells, or Erythrocytes, and may be easily identified on blood 

smear slides as massive blots. This allowed for more precise 

forecasting of WBC. The accuracy for predicting platelets was 

88.36%. The predictability of platelets is low since they appear as 

tiny bright dots on a microscope slide. For 1000 iterations, the 

model was trained. It has been shown that increasing the epoch 

size improves accuracy across the board for all cell types. 

 
FIGURE 3: Preprocess Images 

The results shown in Fig. 3 were obtained from experiments in 

which the anchor box was left unchanged, altered in size, or 

altered in proportion. 

a) Experimentation revealed that altering the anchor box ratio to 

match the ratio of cell morphology improved the precision 

and decreased anchor boxes. Though, this method was not 

effective in detecting stacked cells. Future research should 

consider using morphology-based tools such as the watershed 

algorithm.  

b) The good results for recognizing stacked cells and detecting 

small targets like platelets after modifying the anchor box 

scale. However, the process was slowed down due to the 

larger number of anchor boxes created. Additionally, manual 

labelling is often used to label cell data sets, which means 

that the accuracy of the labels is dependent on the quality of 

the labelling workers. Furthermore, labelling platelets in cell 

data sets are often imprecise due to their small size, and 
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adjusting the anchor box scale does not produce desirable 

results (see Table II). 

TABLE II 

Time Performance Analysis 

Method MTT  TTT  

Faster RCNN  

(ResNet 50 & Anchor box) 
2.61 176.473 

   

Faster RCNN  

(ResNet 50 & Reduced Anchor box) 
0.75 52.312 

 

Faster RCNN  
(ResNet 50) 

0.852 60.681 

The curves of the loss functions for the various experimental 

approaches are depicted in Fig. 4. In the instance of epoch, the 

three-way drop rate was relatively constant both before and after 

modifying the anchor box. However, the loss was less severe 

when the anchor box ratio was modified than it would have been 

without the modification. The amount of time needed to progress 

one level once the scale slightly increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4: Experimental strategies for Loss function 

The cell form stabilizes for the ratio of one-to-one, one-to-two, 

and two-to-one to one-to-one following the morphological 

properties of cells. As a result, once the anchor box ratio is 

optimized for the experimental data, which dramatically improves 

search speed. By focusing on the subset of the search that 

corresponds to the target graphics attributes, the strategy improves 

MAP while increasing the precision with which it can recognize 

cells. Experiments on-time performance reveal that an optimized 

anchor box ratio can somewhat boost MAP and performance. The 

anchor box ratio was shifted to [16,32,64,128,256] to detect the 

tiny, hard-to-see target platelets. Increases in the ratio result in a 

corresponding rise in the total number of anchor boxes. As a 

result, MAP and temporal performance suffer from diminished 

computational power. 

Meanwhile, the inclusion of finer scales improves the clarity of 

small objects and cell stacks, making it much simpler to spot tiny 

targets like platelets and stacked red blood cells. The study 

recommends a strategy to enhance the effectiveness. The method 

improves the efficiency of model detection in less time by 

optimizing the network structure to collect cell properties. 

V. CONCLUSION 

Object Detection's many applications in computer vision and 

image processing help steer humanity toward a more promising 

future. Numerous methods have been devised since the invention 

of object detection to improve the speed and accuracy with which 

it may be applied to detect objects in moving or still images. To 

better understand how different blood cell types develop into 

erythrocytes, leukocytes, and platelets, we applied Faster R-CNN. 

Faster R-application CNN's to blood cell images reveals that it 

detects boundary boxes for WBCs with higher accuracy than 

RBCs. This is the case for various reasons, including the larger 

size of WBCs compared to RBCs and the fact that RBCs are often 

found in clusters in the blood, making it challenging to get precise 

tangible images in blood slides. Increasing the number of epochs 

used in training improves the model's overall accuracy. This study 

provides the Fatser R-CNN model, specifically designed to 

overcome obstacles in blood cell detection.  

Experiments revealed improved MAP and time performance 

when the anchor box ratio was modified. Changing the anchor 

box's size has a negative effect on MAP and recognition speed, 

although even small targets and groups of RBCs are easily 

identified. Detection in a cell flow video could also be performed 

with respectable MAP efficiency. The setup can be further 

improved to enhance the precision and speed due to the small 

sample size and short period. For large data sets, adding labels to 

the training process could improve test accuracy and help produce 

a better-tailored model for future use. Using many data sets, the 

detection accuracy of multi-scale and stacked cells might be 

improved using techniques. When more advanced algorithms are 

created, and more extensive data sets are amassed. The system's 

usefulness extends beyond its original intent of detecting cells in 

images. 
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